YoloV5实战:手把手教物体检测——YoloV5

 

目录

摘要

训练

1、下载代码

2、配置环境

3、准备数据集

4、生成数据集

5、修改配置参数

6、修改train.py的参数

7、查看训练结果

测试


摘要

YOLOV5严格意义上说并不是YOLO的第五个版本,因为它并没有得到YOLO之父Joe Redmon的认可,但是给出的测试数据总体表现还是不错。详细数据如下:

 

YOLOv5并不是一个单独的模型,而是一个模型家族,包括了YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x、YOLOv5x+TTA,这点有点儿像EfficientDet。由于没有找到V5的论文,我们也只能从代码去学习它。总体上和YOLOV4差不多,可以认为是YOLOV5的加强版。

项目地址:https://github.com/ultralytics/YOLOv5

训练

1、下载代码

项目地址:https://github.com/ultralytics/YOLOv5,最近作者又更新了一些代码。

 

2、配置环境

matplotlib>=3.2.2

numpy>=1.18.5

opencv-python>=4.1.2

pillow

PyYAML>=5.3

scipy>=1.4.1

tensorboard>=2.2

torch>=1.6.0

torchvision>=0.7.0

tqdm>=4.41.0

 

3、准备数据集

数据集采用Labelme标注的数据格式,数据集从RSOD数据集中获取了飞机和油桶两类数据集,并将其转为Labelme标注的数据集。

数据集的地址: https://pan.baidu.com/s/1iTUpvA9_cwx1qiH8zbRmDg

提取码:gr6g

或者:https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/14003627

将下载的数据集解压后放到工程的根目录。为下一步生成测试用的数据集做准备。如下图:

4、生成数据集

YoloV5的数据集和以前版本的数据集并不相同,我们先看一下转换后的数据集。

数据结构如下图:

https://img-blog.csdnimg.cn/20200924200709826.png

images文件夹存放train和val的图片

labels里面存放train和val的物体数据,里面的每个txt文件和images里面的图片是一一对应的。

txt文件的内容如下:

https://img-blog.csdnimg.cn/2020092420072036.png

格式:物体类别 x y w h  

坐标是不是真实的坐标,是将坐标除以宽高后的计算出来的,是相对于宽和高的比例。

下面我们编写生成数据集的代码,新建LabelmeToYoloV5.py,然后写入下面的代码。

import os

import numpy as np

import json

from glob import glob

import cv2

from sklearn.model_selection import train_test_split

from os import getcwd



classes = ["aircraft", "oiltank"]

# 1.标签路径

labelme_path = "LabelmeData/"

isUseTest = True  # 是否创建test集

# 3.获取待处理文件

files = glob(labelme_path + "*.json")

files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]

print(files)

if isUseTest:

    trainval_files, test_files = train_test_split(files, test_size=0.1, random_state=55)

else:

    trainval_files = files

# split

train_files, val_files = train_test_split(trainval_files, test_size=0.1, random_state=55)





def convert(size, box):

    dw = 1. / (size[0])

    dh = 1. / (size[1])

    x = (box[0] + box[1]) / 2.0 - 1

    y = (box[2] + box[3]) / 2.0 - 1

    w = box[1] - box[0]

    h = box[3] - box[2]

    x = x * dw

    w = w * dw

    y = y * dh

    h = h * dh

    return (x, y, w, h)





wd = getcwd()

print(wd)





def ChangeToYolo5(files, txt_Name):

    if not os.path.exists('tmp/'):

        os.makedirs('tmp/')

    list_file = open('tmp/%s.txt' % (txt_Name), 'w')

    for json_file_ in files:

        json_filename = labelme_path + json_file_ + ".json"

        imagePath = labelme_path + json_file_ + ".jpg"

        list_file.write('%s/%s\n' % (wd, imagePath))

        out_file = open('%s/%s.txt' % (labelme_path, json_file_), 'w')

        json_file = json.load(open(json_filename, "r", encoding="utf-8"))

        height, width, channels = cv2.imread(labelme_path + json_file_ + ".jpg").shape

        for multi in json_file["shapes"]:

            points = np.array(multi["points"])

            xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0

            xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0

            ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0

            ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0

            label = multi["label"]

            if xmax <= xmin:

                pass

            elif ymax <= ymin:

                pass

            else:

                cls_id = classes.index(label)

                b = (float(xmin), float(xmax), float(ymin), float(ymax))

                bb = convert((width, height), b)

                out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

                print(json_filename, xmin, ymin, xmax, ymax, cls_id)

ChangeToYolo5(train_files, "train")

ChangeToYolo5(val_files, "val")

ChangeToYolo5(test_files, "test")

 

这段代码执行完成会在LabelmeData生成每个图片的txt标注数据,同时在tmp文件夹下面生成训练集、验证集和测试集的txt,txt记录的是图片的路径,为下一步生成YoloV5训练和测试用的数据集做准备。在tmp文件夹下面新建MakeData.py文件,生成最终的结果,目录结构如下图:

 

打开MakeData.py,写入下面的代码。

import shutil
import os

file_List = ["train", "val", "test"]
for file in file_List:
    if not os.path.exists('../VOC/images/%s' % file):
        os.makedirs('../VOC/images/%s' % file)
    if not os.path.exists('../VOC/labels/%s' % file):
        os.makedirs('../VOC/labels/%s' % file)
    print(os.path.exists('../tmp/%s.txt' % file))
    f = open('../tmp/%s.txt' % file, 'r')
    lines = f.readlines()
    for line in lines:
        print(line)
        line = "/".join(line.split('/')[-5:]).strip()
        shutil.copy(line, "../VOC/images/%s" % file)
        line = line.replace('JPEGImages', 'labels')
        line = line.replace('jpg', 'txt')
        shutil.copy(line, "../VOC/labels/%s/" % file)

执行完成后就可以生成YoloV5训练使用的数据集了。结果如下:

5、修改配置参数

打开voc.yaml文件,修改里面的配置参数
train: VOC/images/train/  # 训练集图片的路径
val: VOC/images/val/  # 验证集图片的路径
# number of classes

nc: 2 #检测的类别,本次数据集有两个类别所以写2



# class names

names: ["aircraft", "oiltank"]#类别的名称,和转换数据集时的list对应

6、修改train.py的参数

cfg参数是YoloV5 模型的配置文件,模型的文件存放在models文件夹下面,按照需求填写不同的文件。

 

weights参数是YoloV5的预训练模型,和cfg对应,例:cfg配置的是yolov5s.yaml,weights就要配置yolov5s.pt
data是配置数据集的配置文件,我们选用的是voc.yaml,所以配置data/voc.yaml
修改上面三个参数就可以开始训练了,其他的参数根据自己的需求修改。修改后的参数配置如下:
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')

parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml path')

parser.add_argument('--data', type=str, default='data/voc.yaml', help='data.yaml path')

 修改完成后,就可以开始训练了。如下图所示:

 

7、查看训练结果

在经历了300epoch训练之后,我们会在runs文件夹下面找到训练好的权重文件和训练过程的一些文件。如图:

 

 

 

 

 

测试

首先需要在voc.yaml中增加测试集的路径,打开voc.yaml,在val字段后面增加test: tmp/test.txt这行代码,如图:

 

修改test.py中的参数,下面的这几个参数要修改。

parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument(
'--weights', nargs='+', type=str, default='runs/exp7/weights/best.pt', help='model.pt path(s)')
parser.add_argument(
'--data', type=str, default='data/voc.yaml', help='*.data path')
parser.add_argument(
'--batch-size', type=int, default=2, help='size of each image batch')
parser.add_argument(
'--save-txt', default='True', action='store_true', help='save results to *.txt')

275 修改test的方法,增加保存测试结果的路径。这样测试完成后就可以在inference\images查看到测试的图片,在inference\output中查看到保存的测试结果。

如图:

 

下面是运行的结果:

代码和模型:https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/13094352

如果有打赏请扫描下面的二维码。

AI浩 CSDN认证博客专家 Pytorch C# C++
毕业于北京航空航天大学,有九年的系统集成研发经验,通信测量系统和通信仪表方向,三年的物体检测算法研究经验,遥感图像物体检测方向。
已标记关键词 清除标记
<p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;">PyTorch</span><span style="font-family:'微软雅黑',sans-serif;color:#313d54;">版的<span>YOLOv5</span>是轻量而高性能的实时目标检测方法。利用<span>YOLOv5</span>训练完自己的数据集后,如何向大众展示并提供落地的服务呢?<span> </span></span> </p> <p style="background:white;">   </p> <p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;">本课程将提供相应的解决方案,具体讲述如何使用<span>Web</span>应用程序框架<span>Flask</span>进行<span>YOLOv5</span>的<span>Web</span>应用部署。用户可通过客户端浏览器上传图片,经服务器处理后返回图片检测数据并在浏览器中绘制检测结果。<span> </span></span> </p> <p style="background:white;">   </p> <p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;">本课程的<span>YOLOv5</span>使用<span>ultralytics/yolov5</span>,在</span><strong><span style="font-family:'Helvetica',sans-serif;color:#c00000;">Ubuntu</span></strong><span style="font-family:'微软雅黑',sans-serif;color:#313d54;">系统上做项目演示,并提供在</span><strong><span style="font-family:'微软雅黑',sans-serif;color:#c00000;">Windows</span></strong><span style="font-family:'微软雅黑',sans-serif;color:#313d54;">系统上的部署方式文档。</span> </p> <p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;">本项目采取前后端分离的系统架构和开发方式,减少前后端的耦合。课程包括:<span>YOLOv5</span>的安装、 <span>Flask</span>的安装、<span>YOLOv5</span>的检测<span>API</span>接口python代码、 <span>Flask</span>的服务程序的python代码、前端<span>html</span>代码、<span>CSS</span>代码、<span>Javascript</span>代码、系统部署演示、生产系统部署建议等。</span> </p> <p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;"> </span> </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<span style="background-color:#ffffff;"><strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong></span> </p> <p> <img src="https://img-bss.csdnimg.cn/202010271340349334.jpg" alt="yolov5部署演示" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010271340598046.jpg" alt="系统架构" /> </p>
<p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">YOLO</span><span style="font-family:'微软雅黑',sans-serif;">系列是基于深度学习的端到端实时目标检测方法。 <span>PyTorch</span>版的<span>YOLOv5</span>轻量而性能高,更加灵活和便利。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">本课程将手把手大家使用<span>labelImg</span>标注和使用<span>YOLOv5</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">本课程的<span>YOLOv5</span>使用<span>ultralytics/yolov5</span>,在<span style="color:#e03e2d;"><strong><span>Windows</span></strong></span>系统上做项目演示。包括:安装<span>YOLOv5</span>、标注自己的数据集、准备自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型和性能统计。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">希望学习Ubuntu上演示的同学,请前往 </span><span style="font-family:微软雅黑, sans-serif;">《</span><span style="font-family:微软雅黑, sans-serif;">YOLOv5(PyTorch)</span><span style="font-family:微软雅黑, sans-serif;">实战:训练自己的数据集(Ubuntu)》课程链接:https://edu.csdn.net/course/detail/30793</span><span style="font-family:宋体;"><span style="font-size:14px;"> </span></span> </p> <p style="margin-left:0cm;">   </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090636458614.jpg" alt="课程内容" width="880" height="356" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637068681.jpg" alt="技巧" width="880" height="706" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637267536.jpg" alt="功能" width="880" height="913" /> </p>
相关推荐
<p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-size:13.5pt;font-family:'微软雅黑',sans-serif;color:#3598db;">【为什么要学习这门课】</span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-family:'微软雅黑',sans-serif;color:#222226;">Linux</span><span style="font-family:'微软雅黑',sans-serif;color:#222226;">创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span></span><span style="font-family:微软雅黑, sans-serif;color:#e03e2d;background-color:#ffffff;">冗谈不够,放码过来!</span><span style="font-family:'微软雅黑',sans-serif;color:#222226;">代码阅读是从基础到提高的必由之路。 </span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-family:'微软雅黑',sans-serif;color:#222226;">YOLOv5</span><span style="font-family:'微软雅黑',sans-serif;color:#222226;">是最近推出的轻量且高性能的实时目标检测方法。<span>YOLOv5</span>使用<span>PyTorch</span>实现,含有很多业界前沿和常用的技巧,可以作为很好的代码阅读案例,让我们深入探究其实现原理,其中不少知识点的代码可以作为相关项目的借鉴。</span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-size:13.5pt;font-family:'微软雅黑',sans-serif;color:#3598db;">【课程内容与收获】</span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-family:'微软雅黑',sans-serif;color:#222226;">本课程将详细解析<span>YOLOv5</span>的实现原理和源码,对关键代码使用<span>PyCharm</span>的<span>debug</span>模式逐行分析解读。 本课程将提供注释后的<span>YOLOv5</span>的源码程序文件。</span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-family:'微软雅黑',sans-serif;color:#222226;"> <img src="https://img-bss.csdnimg.cn/202012061533559839.jpg" alt="课程内容" /></span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-size:13.5pt;font-family:'微软雅黑',sans-serif;color:#3598db;">【相关课程】</span> </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong> </p>
<p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而性能高,更加灵活和便利。 </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">本课程将手把手大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。 </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">本课程的YOLOv5使用ultralytics/yolov5,在<strong><span style="color:#e03e2d;">Ubuntu</span></strong>系统上做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型和性能统计。 </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">希望学习在Windows系统上演示的学员,请前往《YOLOv5(PyTorch)实战:训练自己的数据集(Windows)》</span><span style="font-family:微软雅黑, sans-serif;">课程链接:https://edu.csdn.net/course/detail/30923</span> </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090632026212.jpg" alt="课程内容" width="880" height="356" /> </p> <p class="MsoNormal"> <img src="https://img-bss.csdnimg.cn/202010090632284127.jpg" alt="技巧" width="880" height="706" /> </p> <p class="MsoNormal"> <img src="https://img-bss.csdnimg.cn/202010090633275608.jpg" alt="功能" width="880" height="913" /> </p>
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页