ResNet实战:tensorflow2.0以上版本,使用ResNet50实现图像分类任务

目录

摘要

训练

第一步 导入需要的数据包,设置全局参数

第二步 加载图片

第三步 图像增强

第四步 保留最好的模型和动态设置学习率

第五步 建立模型并训练

第六步 保留训练结果,并将其生成图片

完整代码:


摘要

本例提取了猫狗大战数据集中的部分数据做数据集,演示tensorflow2.0以上的版本如何使用Keras实现图像分类,分类的模型使用ResNet50

训练

第一步 导入需要的数据包,设置全局参数

import numpy as np
from tensorflow.keras.optimizers import Adam
import cv2
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.applications.resnet import ResNet50
import os
from  tensorflow.keras.models import load_model
这里可以看出tensorflow2.0以上的版本集成了Keras,我们在使用的时候就不必单独安装Keras了,以前的代码升级到tensorflow2.0以上的版本将keras前面加上tensorflow即可。tensorflow说完了,再说明一下几个重要的全局参数
norm_size = 100 设置输入图像的大小,图像的大小根据自己的需求设置,别太大,够用就行了。

datapath = 'data/train' 设置图片存放的路径,在这里要说明一下如果图片很多,一定不要放在工程目录下,否则Pycharm加载工程的时候会浏览所有的图片,很慢很慢。
EPOCHS = 100 epochs的数量,关于epoch的设置多少合适,这个问题很纠结,一般情况设置300足够了,如果感觉没有训练好,再载入模型训练。
INIT_LR = 1e-3 学习率,一般情况从0.001开始逐渐降低,也别太小了到1e-6就可以了。
classnum = 2 类别数量,数据集有两个类别,所有就分为两类。
batch_size = 16 batchsize,根据硬件的情况和数据集的大小设置,太小了抖的厉害,太大了收敛不好,根据经验来,一般设置为2的次方。

第二步 加载图片

处理图像的步骤:

  1. 读取图像
  2. 用指定的大小去resize图像。
  3. 将图像转为数组
  4. 图像归一化
  5. 标签onehot(标签要不要做onehot和选用的loss函数有关,本例选用的loss可以直接处理标签,所以不用onehot)

具体做法详见代码:

labelList = []

dicClass = {'cat': 0, 'dog': 1}

def loadImageData():

    imageList = []

    listImage = os.listdir(datapath)

    for img in listImage:

        labelName = dicClass[img.split('.')[0]]

        print(labelName)

        labelList.append(labelName)

        dataImgPath = os.path.join(datapath, img)

        print(dataImgPath)

        image = cv2.imdecode(np.fromfile(dataImgPath, dtype=np.uint8), -1)

        image = cv2.resize(image, (norm_size, norm_size), interpolation=cv2.INTER_LANCZOS4)

        image = img_to_array(image)

        imageList.append(image)

    imageList = np.array(imageList, dtype="int") / 255.0

    return imageList

print("开始加载数据")

imageArr = loadImageData()

labelList = np.array(labelList)

print("加载数据完成")

做好数据之后,我们需要切分训练集和测试集,一般按照4:1的比例来切分。切分数据集使用train_test_split()方法,需要导入from sklearn.model_selection import train_test_split 包。例:

trainX, valX, trainY, valY = train_test_split(imageArr, labelList, test_size=0.2, random_state=42)
 

第三步 图像增强

ImageDataGenerator()是keras.preprocessing.image模块中的图片生成器,同时也可以在batch中对数据进行增强,扩充数据集大小,增强模型的泛化能力。比如进行旋转,变形,归一化等等。

keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,samplewise_center
=False, featurewise_std_normalization=False, samplewise_std_normalization=False,zca_whitening=False,
 zca_epsilon=1e-06, rotation_range=0.0, width_shift_range=0.0, height_shift_range=0.0,brightness_range=None, shear_range=0.0, zoom_range=0.0,channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None,data_format=None,validation_split=0.0)

 

参数:

  • featurewise_center: Boolean. 对输入的图片每个通道减去每个通道对应均值。
  • samplewise_center: Boolan. 每张图片减去样本均值, 使得每个样本均值为0。
  • featurewise_std_normalization(): Boolean()
  • samplewise_std_normalization(): Boolean()
  • zca_epsilon(): Default 12-6
  • zca_whitening: Boolean. 去除样本之间的相关性
  • rotation_range(): 旋转范围
  • width_shift_range(): 水平平移范围
  • height_shift_range(): 垂直平移范围
  • shear_range(): float, 透视变换的范围
  • zoom_range(): 缩放范围
  • fill_mode: 填充模式, constant, nearest, reflect
  • cval: fill_mode == 'constant'的时候填充值
  • horizontal_flip(): 水平反转
  • vertical_flip(): 垂直翻转
  • preprocessing_function(): user提供的处理函数
  • data_format(): channels_first或者channels_last
  • validation_split(): 多少数据用于验证集

本例使用的图像增强代码如下:

train_datagen = ImageDataGenerator(featurewise_center=True,
                                   featurewise_std_normalization=True,
                                   rotation_range=20,
                                   width_shift_range=0.2,
                                   height_shift_range=0.2,
                                   horizontal_flip=True)
val_datagen = ImageDataGenerator()  #
验证集不做图片增强
train_generator = train_datagen.flow(trainX, trainY, batch_size=batch_size, shuffle=True)
val_generator = val_datagen.flow(valX, valY, batch_size=batch_size, shuffle=True)

第四步 保留最好的模型和动态设置学习率

ModelCheckpoint用来保存成绩最好的模型。

语法如下:

keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1)

该回调函数将在每个epoch后保存模型到filepath

filepath可以是格式化的字符串,里面的占位符将会被epoch值和传入on_epoch_end的logs关键字所填入

例如,filepath若为weights.{epoch:02d-{val_loss:.2f}}.hdf5,则会生成对应epoch和验证集loss的多个文件。

参数

  • filename:字符串,保存模型的路径
  • monitor:需要监视的值
  • verbose:信息展示模式,0或1
  • save_best_only:当设置为True时,将只保存在验证集上性能最好的模型
  • mode:‘auto’,‘min’,‘max’之一,在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。
  • save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
  • period:CheckPoint之间的间隔的epoch数

ReduceLROnPlateau当评价指标不在提升时,减少学习率,语法如下:

keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)

当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率

参数

  • monitor:被监测的量
  • factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
  • patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
  • mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
  • epsilon:阈值,用来确定是否进入检测值的“平原区”
  • cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
  • min_lr:学习率的下限

本例代码如下:

checkpointer = ModelCheckpoint(filepath='weights_best_Reset50_model.hdf5',

                               monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')

 

reduce = ReduceLROnPlateau(monitor='val_accuracy', patience=10,

                           verbose=1,

                           factor=0.5,

                           min_lr=1e-6)

第五步 建立模型并训练

model = ResNet50(weights=None, classes=classnum)
optimizer = Adam(lr=INIT_LR)
model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model=load_model("my_model_resnet.h5")
history = model.fit_generator(train_generator,
                              steps_per_epoch=trainX.shape[0] / batch_size,
                              validation_data=val_generator,
                              epochs=EPOCHS,
                              validation_steps=valX.shape[0] / batch_size,
                              callbacks=[checkpointer, reduce],
                              verbose=1, shuffle=True)
model.save('my_model_resnet.h5')

第六步 保留训练结果,并将其生成图片

loss_trend_graph_path = r"WW_loss.jpg"

acc_trend_graph_path = r"WW_acc.jpg"

import matplotlib.pyplot as plt

 

print("Now,we start drawing the loss and acc trends graph...")

# summarize history for accuracy

fig = plt.figure(1)

plt.plot(history.history["accuracy"])

plt.plot(history.history["val_accuracy"])

plt.title("Model accuracy")

plt.ylabel("accuracy")

plt.xlabel("epoch")

plt.legend(["train", "test"], loc="upper left")

plt.savefig(acc_trend_graph_path)

plt.close(1)

# summarize history for loss

fig = plt.figure(2)

plt.plot(history.history["loss"])

plt.plot(history.history["val_loss"])

plt.title("Model loss")

plt.ylabel("loss")

plt.xlabel("epoch")

plt.legend(["train", "test"], loc="upper left")

plt.savefig(loss_trend_graph_path)

plt.close(2)

完整代码:


 

import numpy as np
from tensorflow.keras.optimizers import Adam
import cv2
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.applications.resnet import ResNet50
import os
from  tensorflow.keras.models import load_model

norm_size = 100
datapath = 'data/train'
EPOCHS = 100
INIT_LR = 1e-3
labelList = []
dicClass = {'cat': 0, 'dog': 1}
classnum = 2
batch_size = 16
def loadImageData():
    imageList = []
    listImage = os.listdir(datapath)
    for img in listImage:
        labelName = dicClass[img.split('.')[0]]
        print(labelName)
        labelList.append(labelName)
        dataImgPath = os.path.join(datapath, img)
        print(dataImgPath)
        image = cv2.imdecode(np.fromfile(dataImgPath, dtype=np.uint8), -1)
        image = cv2.resize(image, (norm_size, norm_size), interpolation=cv2.INTER_LANCZOS4)
        image = img_to_array(image)
        imageList.append(image)
    imageList = np.array(imageList, dtype="int") / 255.0
    return imageList


print("开始加载数据")
imageArr = loadImageData()
labelList = np.array(labelList)
print("加载数据完成")
print(labelList)
trainX, valX, trainY, valY = train_test_split(imageArr, labelList, test_size=0.2, random_state=42)
from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(featurewise_center=True,
                                   featurewise_std_normalization=True,
                                   rotation_range=20,
                                   width_shift_range=0.2,
                                   height_shift_range=0.2,
                                   horizontal_flip=True)
val_datagen = ImageDataGenerator()  # 验证集不做图片增强

train_generator = train_datagen.flow(trainX, trainY, batch_size=batch_size, shuffle=True)
val_generator = val_datagen.flow(valX, valY, batch_size=batch_size, shuffle=True)
checkpointer = ModelCheckpoint(filepath='weights_best_Reset50_model.hdf5',
                               monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')

reduce = ReduceLROnPlateau(monitor='val_accuracy', patience=10,
                           verbose=1,
                           factor=0.5,
                           min_lr=1e-6)

model = ResNet50(weights=None, classes=classnum)
optimizer = Adam(lr=INIT_LR)
model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model=load_model("my_model_resnet.h5")
history = model.fit_generator(train_generator,
                              steps_per_epoch=trainX.shape[0] / batch_size,
                              validation_data=val_generator,
                              epochs=EPOCHS,
                              validation_steps=valX.shape[0] / batch_size,
                              callbacks=[checkpointer, reduce],
                              verbose=1, shuffle=True)
model.save('my_model_resnet.h5')
print(history)

loss_trend_graph_path = r"WW_loss.jpg"
acc_trend_graph_path = r"WW_acc.jpg"
import matplotlib.pyplot as plt

print("Now,we start drawing the loss and acc trends graph...")
# summarize history for accuracy
fig = plt.figure(1)
plt.plot(history.history["accuracy"])
plt.plot(history.history["val_accuracy"])
plt.title("Model accuracy")
plt.ylabel("accuracy")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
plt.savefig(acc_trend_graph_path)
plt.close(1)
# summarize history for loss
fig = plt.figure(2)
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("Model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
plt.savefig(loss_trend_graph_path)
plt.close(2)
print("We are done, everything seems OK...")
# #windows系统设置10关机
os.system("shutdown -s -t 10")

 

AI浩 CSDN认证博客专家 Pytorch C# C++
毕业于北京航空航天大学,有九年的系统集成研发经验,通信测量系统和通信仪表方向,三年的物体检测算法研究经验,遥感图像物体检测方向。
已标记关键词 清除标记
相关推荐
TensorFlow是由Google开发的深度学习框架,被广泛应用于各类机器学习算法的编程实现,无论你是专家还是初学者,它都可以帮助你轻松构建和部署机器学习模型。作为当下最为热门的机器学习框架,TensorFlow具有非常完整的生态系统,可以帮助你使用机器学习解决各种棘手的现实问题,并随时随地进行可靠的机器学习生产,英特尔、AIRBUS、中国移动、小米等一大批知名企业都在使用TensorFlow进行开发。 <p> <br /> </p> <p> <b><span style="background-color:#FFE500;">【超实用课程内容】</span></b> </p> <p> 本课程将从实战的角度出发,手把手教你使用TensorFlow实现各类深度学习算法——图像分类、语义分割、姿态估算等,全面提升学员的深度学习开发水平,帮助你在人工智能的浪潮之中创造属于自己的新天地 </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <b><br /> </b> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <b><span style="background-color:#FFE500;">【课程如何观看?】</span></b> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> PC端:<a href="https://edu.csdn.net/course/detail/26277"><span id="__kindeditor_bookmark_start_21__"></span></a><a href="https://edu.csdn.net/course/detail/26956">https://edu.csdn.net/course/detail/26956</a> </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> 移动端:CSDN 学院APP(注意不是CSDN APP哦) </p> <p style="font-family:Helvetica;color:#3A4151;font-size:14px;background-color:#FFFFFF;"> 本课程为录播课,课程永久有效观看时长,但是大家可以抓紧时间学习哦~ </p> <p> <br /> </p>
<ul style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> <li> <span>Tensorflow2.0介绍:</span> </li> </ul> <p style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> tensorflow是GOOGLE在2015年底发布的一款深度学习框架,也是目前全世界用得最多,发展最好的深度学习框架。2019年3月8日,GOOGLE发布最新tensorflow2版本。新版本tensorflow有很多新特征,更快更容易使用更人性化。但是老版的tensorflow程序在新版本中几乎都无法继续使用,所以我们有必要学习新版tensorflow2的新用法。 </p> <ul style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> <li> <span>课程介绍:</span> </li> </ul> <p style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> 我们的这门课程适合小白学习,也适合有基础的同学学习。课程会从0开始学习,从python环境安装,python入门,numpy,pandas,matplotlib使用,深度学习基础,一直讲到tensorflow基础,进阶,项目实战。不管你是0基础小白,想进入AI行业,还是有一定基础,想学习最新的tensorflow2的使用,都适合我们这门课程。 </p> <ul style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> <li> <span>讲师介绍:</span> </li> </ul> <p style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> 覃秉丰,物理系毕业转AI行业,想转行同学可以找我聊聊。机器学习、深度学习神经网络领域多年研究开发授课经验,精通算法原理与编程实践;曾完成过多项图像识别、目标识别、语音识别等企业项目,一线实战经验丰富;长期为多家包括世界五百强在内的大型企业总部做人工智能技术内训服务(中国移动、中国银行,华夏银行,中国太平洋,国家电网、中海油等)。上课特点:公式尽量一个一个符号推,代码尽量一行一行讲,希望所有人都能学有所得。 </p>
<p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程介绍】</strong></span>  </p> <p style="text-align:left;">      Pytorch项目实战 垃圾分类 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。 </p> <p style="text-align:left;">     从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。 </p> <p style="text-align:left;">     课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程要求】</span></strong> </p> <p style="text-align:left;"> (1)开发环境:python版本:Python3.7+;<span style="color:#E53333;"> torch 版本:1.2.0+; torchvision版本:0.4.0+</span> </p> <p style="text-align:left;"> (2)开发工具:Pycharm; </p> <p style="text-align:left;"> (3)学员基础:需要一定的Python基础,及深度学习基础; </p> <p style="text-align:left;"> (4)学员收货:掌握最新科技图像分类关键技术; </p> <p style="text-align:left;"> (5)学员资料:内含完整程序源码和数据集; </p> <p style="text-align:left;"> (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码 </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <span style="color:#E53333;"><strong>【课程特色】</strong></span> </p> 阵容强大 <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> 讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。 </p> <p style="text-align:left;"> 仅跟前沿 </p> <p style="text-align:left;"> 基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。 </p> <p style="text-align:left;"> 实战为先 </p> <p style="text-align:left;"> 根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目 </p> <p style="text-align:left;"> 保障效果 </p> <p style="text-align:left;"> 项目实战方向包含了学术届和工业届最前沿技术要点 </p> <p style="text-align:left;"> 项目包装简历优化 </p> <p style="text-align:left;"> 课程内垃圾分类图像实战项目完成后可以直接优化到简历中 </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程思维导图】</span></strong> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081323318969.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <strong><span style="color:#E53333;">【课程实战案例】</span></strong> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <img src="https://img-bss.csdn.net/201912081326184463.png" alt="" /> </p> <p style="text-align:left;"> <br /> </p> <p style="text-align:left;"> <br /> </p>
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页