自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI浩

记录自己的程序人生

  • 博客(46)
  • 资源 (70)
  • 收藏
  • 关注

转载 图像特征——下篇

图像特征在图像特征系列,我们列举了这几年kaggle竞赛平台上90%以上最为常用的图像特征,对应的框架如下,很多特征已经在之前的上篇和中篇介绍完了,此处我们弥补上剩下的一些常用图像特征:1.图像色彩特征图像色彩有许多实际用途,包括评估压缩算法、评估给定相机传感器模块对颜色的敏感度、计算图像的“美学质量”等等,图像色彩越高的话往往图片越加亮丽更能吸引用户。此处我们借鉴2003年的论文"Measuring colorfulness in natural images"使用Ope.

2021-04-30 09:24:52 11

原创 C++中new与malloc的区别

这是个老生常谈的问题。当时我回答new从自由存储区上分配内存,malloc从堆上分配内存;new/delete会调用构造函数/析构函数对对象进行初始化与销毁;operator new/delete可以进行重载;然后强行分析了一下自由存储区与堆的区别。回来后感觉这个问题其实回答得不怎么好,因为关于new与malloc的区别实际上很多。面试期间刚好是刚期末考完,之后是几个课设没时间去整理。今天花了点时间整理下这个问题。new与malloc的10点区别1. 申请的内存所在位置new操作符从自由存储区(

2021-04-29 11:11:53 25

原创 图像分割库segmentation_models.pytorch

segmentation_models_pytorch是一个基于PyTorch的图像分割神经网络这个新集合由俄罗斯的程序员小哥Pavel Yakubovskiy一手打造。github地址:https://github.com/qubvel/segmentation_models.pytorch该库的主要功能是: 高级API(只需两行即可创建神经网络) 用于二分类和多类分割的9种模型架构(包括传奇的Unet) 每种架构有104种可用的编码器 所有编码器均具有预训练.

2021-04-28 23:03:02 147 2

转载 图像特征——中篇

图像特征和文本特征类似,图像特征也是梯度提升树模型非常难以挖掘的一类数据,目前图像相关的问题,例如图像分类,图像分割等等几乎都是以神经网络为主的模型,但是在一些多模态的问题中,例如商品搜索推荐的问题中,里面既包含图像信息又含有文本信息等,这个时候基于梯度提升树模型的建模方案还是至关重要的,这个时候为了更好地使用所有的数据信息,我们需要对图像特征进行多方位的提取。本节我们接着上一节10大特征之后再补充另外的一些最为经典的特征。1.图像预训练特征目前预训练的图像特征非常的多,典型

2021-04-28 09:30:20 26

原创 tensorflow gpu和cuda版本的对应关系

GPU版本 Python 版本 编译器 构建工具 cuDNN CUDA tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 Bazel 3.1.0 8.0 11.0 tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 Bazel 3.1.0 7.6 10.1 tensorflow-2.2.0 3.5-3.8 GCC 7.3.1 Bazel 2.0.0

2021-04-27 16:05:44 25

原创 EIRP/ERP名词解释及计算。

EIRP/ERP名词解说明:EIRP是什么?EIRP:称为等效全向辐射功率(Effective Isotropic Radiated Power) 。EIRP 功率为无线电发射机供给天线的功率与在给定方向上天线绝对增益的乘积。各方向具有相同单位增益的理想全向天线,通常作为无线通信系统的参考天线。EIRP 功率的定义为:EIRP=Pt*Gt,它表示同全向天线相比,可由发射机获得的在最大天线增益方向上的 发射功率。Pt表示发射机的发射功率,Gt表示发射天线的天线增益。在无线通信工程中,通常用来衡量干扰的

2021-04-27 15:38:42 42

原创 射频器件——定向耦合器

定向耦合器是一种通用的微波/毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。主要技术指标有方向性、驻波比、耦合度、插入损耗。基本简介定向耦合器是微波系统中应用广泛的一种微波器件,它的本质是将微波信号按一定的比例进行功率分配。定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。但从它的耦合机理来看主要分为四种,即小孔耦合、平行耦合、分支耦合以及匹配双T。定向耦

2021-04-26 21:13:43 97

转载 图像特征-上篇(10大图像特征)

图像特征和文本特征类似,图像特征也是梯度提升树模型非常难以挖掘的一类数据,目前图像相关的问题,例如图像分类,图像分割等等几乎都是以神经网络为主的模型,但是在一些多模态的问题中,例如商品搜索推荐的问题中,里面既包含图像信息又含有文本信息等,这个时候基于梯度提升树模型的建模方案还是至关重要的,这个时候为了更好地使用所有的数据信息,我们需要对图像特征进行多方位的提取。本节我们将会介绍图像特征提取中常常采用的方法技术。1.图像长宽图像的长宽可以表示图像的大小。 图像的长宽以及c

2021-04-26 10:23:13 21

转载 文本特征工程——下篇

文本特征-下篇针对梯度提升树模型对文本特征进行特征工程,我们需要充分挖掘Label编码丢失的信息,例如上面的名字特征,内部存在非常强的规律,Mr等信息,这些信息反映了性别相关的信息,如果直接进行Label编码就会丢失此类信息,所以我们可以通过文本技巧对其进行挖掘。在本文中,我们对现在常用的文本特征进行汇总。在上篇中介绍过的此处不在赘述。1.词汇属性特征每个词都有其所属的属性,例如是名词,动词,还是形容词等等。词汇属性特征很多时候能帮助模型带来效果上的微弱提升,可以作为一类补充信息

2021-04-26 10:21:34 17

原创 wandb.errors.UsageError: api_key not configured (no-tty). call wandb.login(key=[your_api_key])

在Power Shell 输入命令: wanbd init 然后出现下图。复制网址到浏览器打开,然后注册,注册完成后会给一个注册码。复制注册码,然后单击鼠标右键,然后按Enter键(注意,注册码不显示,直接单击右键就行)...

2021-04-25 13:28:36 236 3

原创 OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

Optimizer groups: 62 .bias, 70 conv.weight, 59 otherScanning labels VOC\labels\train.cache (494 found, 0 missing, 0 empty, 0 duplicate, for 494 images): 494it [00:00, 14565.09it/s]Scanning labels VOC\labels\val.cache (55 found, 0 missing, 0 empty, 0 dupl

2021-04-25 10:36:24 17

原创 RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.

修改代码。如下: def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. m = self.model[-1] # Detect

2021-04-25 10:32:51 82

原创 yolov5 导出LibTorch模型(CPU和GPU)

官方给出的是CPU:"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formatsUsage: $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1"""import argparseimport torchimport torch.nn as .

2021-04-25 10:10:51 41

原创 未找到导入的项目“C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\Common7\IDE\VC\VCT

在安装CUDA11.0时遇到如下:未找到导入的项目“C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\Common7\IDE\VC\VCTargets\BuildCustomizations\CUDA 11.0.props”。请确认 <Import> 声明中的路径正确,且磁盘上存在该文件。 C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.0\1_Utilitie.

2021-04-24 11:52:36 72

原创 (Win10+vs2017)配置OpenCV开发环境

OpenCV介绍 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。 OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android...

2021-04-23 14:32:26 83

原创 【Kaggle】鸟叫识别

目录赛题识别声景录音中的鸟叫声文件数据下载地址赛题理解code音频数据转图像切分训练集和验证集训练测试赛题识别声景录音中的鸟叫声 您在本次比赛中面临的挑战是确定哪些鸟类在长录音中调用,因为培训数据是在有意义的不同环境中生成的。这正是科学家试图自动化对鸟类种群的远程监测所面临的确切问题。本次比赛以上一场比赛为基础,增加了来自新地点的声景、更多的鸟类物种、关于测试集录音的更丰富的元数据以及火车集的声景。文件介绍trai...

2021-04-22 21:49:33 427

原创 LibTorch入门——Win10+VS2017配置LibTorch开发环境。

最近想研究一下如何部署pytorch模型,看到别人说LibTorch不错,是最近流行的C++部署框架,我打算试试。首先,去pytorch官网上下载,如下图,上面的连接是release版本,下面是Debug版本,支持C++,但是Window不支持Java。点击连接下载下来。我选择的是release版本的。将解压后的文件复制到C盘,如下图:设置环境变量:右键我的电脑->高级系统设置->高级中的环境变量->点击系统变量中的Path->添加dll路径:. .

2021-04-21 12:05:20 80 4

转载 特征工程——文本特征

注意:1.本系列所有的文章主要是梯度提升树模型展开的,抽取的特征主要为帮助梯度提升树模型挖掘其挖掘不到的信息,本文介绍的所有特征都可以当做特征直接加入模型,和基于神经网络的策略有些许差别;2. 因篇幅过多,本篇文章介绍文本特征的20种不同的特征,后续的文本特征会在后面的文章中更新!文本特征-上篇文本特征和类别特征会有一些简单的交集,一些简单的文本特征可以直接当做类别特征处理,例如: 花的颜色:red,blue,yellow等等; 名字:Mr jack,Mr smi..

2021-04-20 12:20:16 68

原创 OSError: cannot write mode P as JPEG

对于这个问题,需要做的也很简单,无非就是将模式“P”转化为“RGB”模式,再保存为“jpg”就可以了,所以只用增加两行代码: if img.mode == "P": img = img.convert('RGB')

2021-04-19 21:11:33 18

转载 特征工程-无序单无序类别特征特征工程!

前言在之前的文章中,我们已经介绍过部分类别特征编码的内容,此处,我们将所有的内容进行整合为一个系列,我们不罗列过多的知识点,重点介绍在kaggle过往几年内中大家最为常用有效的类别编码技巧,如果对其它类型编码感兴趣的朋友可以学习扩展部分的内容。类别特征编码在很多表格类的问题中,高基数的特征类别处理一直是一个困扰着很多人的问题,究竟哪一种操作是最好的,很难说,不同的数据集有不同的特性,可能某一种数据转化操作这A数据集上取得了提升,但在B数据集上就不行了,但是知道的技巧越多,我们能.

2021-04-19 09:10:12 33

转载 特征工程--有序类别变量&单数值变量特征工程

有序类别特征有序类别特征,故名思意,就是有相对顺序的类别特征。例如: 年龄段特征:"1-10,11-20,21-30,31-40"等年龄段; 评分特征:"high,medium,low"; 有序类别特征和无序的类别特征有些许区别,例如Label编码等,如果我们直接按照原先的LabelEncoder进行转化就会丢失特征相对大小的信息,这对于梯度提升树模型会带来负向的效果,因为序列信息可能和标签有着强烈的相关性,比如回购的问题,有“high,medium,low”三种评分,用户购物之

2021-04-19 09:05:27 35

转载 特征工程--单时间变量特征

时间特征时间信息是极其敏感的信息,我们在数据竞赛中看到分数前后排出现较大gap的时候,第一时间需要考虑的就是时间信息,时间特征在很多竞赛中,往往可以决定排名的走势,那么当我们拿到时间相关的特征时,该如何进行思考,构建强有力的特征呢?(PS:本文我们介绍8大常见的单变量时间特征,剩下的两个可能一不小心拿金牌强特会在后续分享)。1.基础周期特征(年月日特征拆解)几乎所有的时间都可以被拆解为年-月-日-小时-分钟-秒-毫秒的形式。在大多数情况中,拆解之后的数据往往存在某些潜在规律的,比如:.

2021-04-19 09:02:35 21

原创 无法在Kaggle笔记本中安装Python库

在notebooks的右侧有internet,打开就可以安装了。

2021-04-18 15:30:01 19

转载 蛋白质结构预测大赛top1方案分享

项目github地址:https://github.com/wudejian789/2020TIANCHI-ProteinSecondaryStructurePrediction-TOP11. 赛题介绍本题为根据蛋白质的一级结构预测其二级结构,经过比赛期间组内师兄的讲解,我对蛋白质一级结构二级结构的理解如下,如有错误,欢迎指正。蛋白质可以看成是一条氨基酸序列,在空间中是一种相互交错螺旋的结构,像一条互相缠绕的绳子:这种三维结构叫做蛋白质的三级结构,而如果不考虑结构的三维性,或者说把这整条

2021-04-18 09:46:14 44

原创 医学影像报告异常检测线上0.895开源

赛题:全球人工智能技术创新大赛赛道一: 医学影像报告异常检测赛题背景影像科医生在工作时会观察医学影像(如CT、核磁共振影像),并对其作出描述,这些描述中包含了大量医学信息,对医疗AI具有重要意义。本任务需要参赛队伍根据医生对CT的影像描述文本数据,判断身体若干目标区域是否有异常以及异常的类型。初赛阶段仅需判断各区域是否有异常,复赛阶段除了判断有异常的区域外,还需判断异常的类型。判断的结果按照指定评价指标进行评测和排名,得分最优者获胜。赛题描述及数据说明sample数据医生对若干CT的影像

2021-04-18 09:20:35 102

原创 AI+无线通信——Top7 (Baseline)总结

队伍介绍 我们的队伍名是Baseline,我们因分享Baseline结缘,所以就把队伍名叫Baseline。 队长: 方曦来自上海交通大学,研三。 队员 :吕晓欣来自网易,AI工程师 队员:王浩来自北京星河亮点,软件研发 队员:杨信达来自广州一家企业,AI工程师方案摘要对于当前通信系统来说,物理层是通信服务得到保障的基础;而对于物理层来说,MIMO则是基本的支撑技术;对于MIMO来说,准确地确定信道质量并做有效反馈及利用又是必...

2021-04-18 07:28:07 270

转载 霸榜多个CV任务,开源仅两天,微软分层ViT模型收获近2k star

屠榜各大 CV 任务的微软 Swin Transformer,近日开源了代码和预训练模型。自 2017 年 6 月谷歌提出 Transformer 以来,它便逐渐成为了自然语言处理领域的主流模型。最近一段时间,Transformer 更是开启了自己的跨界之旅,开始在计算机视觉领域大展身手,涌现出了多个基于 Transformer 的新模型,如谷歌用于图像分类的 ViT 以及复旦、牛津、腾讯等机构的 SETR 等。由此,「Transformer 是万能的吗?」也一度成为机器学习社区的热门话题。不久.

2021-04-16 13:55:36 61

原创 11、QT基础——文件系统

文件操作是应用程序必不可少的部分。Qt 作为一个通用开发库,提供了跨平台的文件操作能力。Qt 通过QIODevice提供了对 I/O 设备的抽象,这些设备具有读写字节块的能力。下面是 I/O 设备的类图(Qt5):QIODevice:所有 I/O 设备类的父类,提供了字节块读写的通用操作以及基本接口; QFileDevice:Qt5新增加的类,提供了有关文件操作的通用实现。 QFlie:访问本地文件或者嵌入资源; QTemporaryFile:创建和访问本地文件系统的临时文件; QBuf..

2021-04-16 13:37:22 15

原创 10、QT基础——绘图和绘图设备

10.1 QPainterQt 的绘图系统允许使用相同的 API 在屏幕和其它打印设备上进行绘制。整个绘图系统基于QPainter,QPainterDevice和QPaintEngine三个类。QPainter用来执行绘制的操作;QPaintDevice是一个二维空间的抽象,这个二维空间允许QPainter在其上面进行绘制,也就是QPainter工作的空间;QPaintEngine提供了画笔(QPainter)在不同的设备上进行绘制的统一的接口。QPaintEngine类应用于QPainter和..

2021-04-16 13:35:45 39

原创 9、QT基础——Qt消息机制和事件

9.1 事件事件(event)是由系统或者 Qt 本身在不同的时刻发出的。当用户按下鼠标、敲下键盘,或者是窗口需要重新绘制的时候,都会发出一个相应的事件。一些事件在对用户操作做出响应时发出,如键盘事件等;另一些事件则是由系统自动发出,如计时器事件。在前面我们也曾经简单提到,Qt 程序需要在main()函数创建一个QApplication对象,然后调用它的exec()函数。这个函数就是开始 Qt 的事件循环。在执行exec()函数之后,程序将进入事件循环来监听应用程序的事件。当事件发生时,Qt ...

2021-04-16 13:33:17 17

原创 8、QT基础——常用控件

Qt为我们应用程序界面开发提供的一系列的控件,下面我们介绍两种最常用一些控件,所有控件的使用方法我们都可以通过帮助文档获取。8.1 QLabel控件使用QLabel是我们最常用的控件之一,其功能很强大,我们可以用来显示文本,图片和动画等。显示文字 (普通文本、html)通过QLabel类的setText函数设置显示的内容:void setText(const QString &)可以显示普通文本字符串QLable *label = new QLable;...

2021-04-16 13:31:23 21

原创 7、QI基础——布局管理器

所谓 GUI 界面,归根结底,就是一堆组件的叠加。我们创建一个窗口,把按钮放上面,把图标放上面,这样就成了一个界面。在放置时,组件的位置尤其重要。我们必须要指定组件放在哪里,以便窗口能够按照我们需要的方式进行渲染。这就涉及到组件定位的机制。Qt 提供了两种组件定位机制:绝对定位和布局定位。绝对定位就是一种最原始的定位方法:给出这个组件的坐标和长宽值。这样,Qt 就知道该把组件放在哪里以及如何设置组件的大小。但是这样做带来的一个问题是,如果用户改变了窗口大小,比如点击最大化按钮或者使用鼠标拖动窗..

2021-04-16 13:29:06 27

原创 6、QT基础——对话框QDialog

6.1 基本概念对话框是 GUI 程序中不可或缺的组成部分。很多不能或者不适合放入主窗口的功能组件都必须放在对话框中设置。对话框通常会是一个顶层窗口,出现在程序最上层,用于实现短期任务或者简洁的用户交互。Qt 中使用QDialog类实现对话框。就像主窗口一样,我们通常会设计一个类继承QDialog。QDialog(及其子类,以及所有Qt::Dialog类型的类)的对于其 parent 指针都有额外的解释:如果 parent 为 NULL,则该对话框会作为一个顶层窗口,否则则作为其父组件的子对话框..

2021-04-16 13:27:07 30

原创 5、 QT基础——QMainWindow

QMainWindow是一个为用户提供主窗口程序的类,包含一个菜单栏(menu bar)、多个工具栏(tool bars)、多个锚接部件(dock widgets)、一个状态栏(status bar)及一个中心部件(central widget),是许多应用程序的基础,如文本编辑器,图片编辑器等。5.1 菜单栏一个主窗口最多只有一个菜单栏。位于主窗口顶部、主窗口标题栏下面。创建菜单栏,通过QMainWindow类的menubar()函数获取主窗口菜单栏指针QMenuBar *...

2021-04-16 13:25:37 16

原创 4、QT基础——信号和槽机制

信号槽是 Qt 框架引以为豪的机制之一。所谓信号槽,实际就是观察者模式。当某个事件发生之后,比如,按钮检测到自己被点击了一下,它就会发出一个信号(signal)。这种发出是没有目的的,类似广播。如果有对象对这个信号感兴趣,它就会使用连接(connect)函数,意思是,将想要处理的信号和自己的一个函数(称为槽(slot))绑定来处理这个信号。也就是说,当信号发出时,被连接的槽函数会自动被回调。这就类似观察者模式:当发生了感兴趣的事件,某一个操作就会被自动触发。4.1 系统自带的信号和槽下面我们完成一个

2021-04-16 10:20:07 14

原创 3、 QT基础——第一个Qt小程序

3.1 按钮的创建在Qt程序中,最常用的控件之一就是按钮了,首先我们来看下如何创建一个按钮QPushButton * btn = new QPushButton; 头文件 #include <QPushButton> //设置父亲 btn->setParent(this); //设置文字 btn->setText("德玛西亚"); //移动位置 btn->move(100,100);...

2021-04-16 10:02:46 17

原创 2、QT基础——创建Qt项目

2.1 使用向导创建打开Qt Creator 界面选择 New Project或者选择菜单栏 【文件】-【新建文件或项目】菜单项弹出New Project对话框,选择Qt Widgets Application,选择【Choose】按钮,弹出如下对话框设置项目名称和路径,按照向导进行下一步,选择编译套件向导会默认添加一个继承自CMainWindow的类,可以在此修改类的名字和基类。默认的基类有QMainWindow、QWidget以及QDialog三个,我们可以选

2021-04-16 09:57:53 14

原创 1、QT基础——Qt概述

1.1 什么是QtQt是一个跨平台的C++图形用户界面应用程序框架。它为应用程序开发者提供建立艺术级图形界面所需的所有功能。它是完全面向对象的,很容易扩展,并且允许真正的组件编程。1.2 Qt的发展史1991年 Qt最早由奇趣科技开发1996年 进入商业领域,它也是目前流行的Linux桌面环境KDE的基础2008年 奇趣科技被诺基亚公司收购,Qt称为诺基亚旗下的编程语言2012年 Qt又被Digia公司收购2014年4月 跨平台的集成开发环境Qt Creator3.1.0发布,同

2021-04-16 09:53:37 38

转载 压缩版styleGAN,合成高保真图像,参数更少、计算复杂度更低

一个名为 MobileStyleGAN 的新架构大大减少了基于样式 GAN 的参数量,降低了计算复杂度。近年来在生成图像建模中,生成对抗网络(GAN)的应用越来越多。基于样式(style-based)的 GAN 可以生成不同层次的细节,大到头部形状、小到眼睛颜色,它在高保真图像合成方面实现了 SOTA,但其生成过程的计算复杂度却非常高,难以应用于智能手机等移动设备。近日,一项专注于基于样式的生成模型的性能优化的研究引发了大家的关注。该研究分析了 StyleGAN2 中最困难的计算部分,并对生成器.

2021-04-15 13:03:42 19

原创 发现一个好用的pytorch框架:timm

项目地址:https://github.com/rwightman/pytorch-image-models安装方法:pipinstalltimm目前已经更新到0.45了。

2021-04-12 18:54:05 184

CNN实现手写数字识别-kaggle竞赛

CNN实现手写数字识别-kaggle竞赛,正确率是99.6,在kaggle排名200左右

2018-12-24

pytorch-YOLOv4-master.rar

手把手教物体检测yolov4 代码,包括数据集,训练好的模型和训练测试用的代码。

2020-09-08

手把手教物体检测yolov5-master.zip

手把手教物体检测源码和训练用的数据,以及模型。手

2020-11-07

LabelmeData.zip

手把手教物体检测用到的数据集

2021-01-01

Labelme标注的数据集转为VOC2007

将Labelme标注的数据转为VOC格式,用于制作物体检测数据集。将Labelme标注的数据转为VOC格式,用于制作物体检测数据集。

2020-04-29

M2Det-手把手教物体检测.rar

手把手教物体检测M2Det源码,包含数据和所需的权重文件。手把手教物体检测M2Det源码,包含数据和所需的权重文件。

2020-05-16

可视化大屏源码总结.rar

对常用的可视化大屏源码进行总结,覆盖主流的大屏设计。满足日常开发使用,希望大家能够喜欢。啦啦啦啦啦啦啦

2020-07-28

ssd pytorch版 手把手源码(包括模型、代码、和数据)

物体检测模型SSD的源码,包括数据、代码、训练模型。环境:Python3.8; pytorch1.5。

2020-04-30

WindowsFormsApp1.zip

WinForm 自定义开关控件

2021-01-08

labelme-master(修改后支持大图像).zip

labelme是目标检测的标注工具,我对labelme做了一些修改,这个支持几个G以上的图像。

2019-12-23

cocoapi-master修改后,使用Win10.zip

对cocoapi做了修改,让其支持win10下的编译。cocoapi是目标检测大赛的COCO数据集的工具。

2019-12-23

Yet-Another-EfficientDet-Pytorch-master.rar

手把手教物体检测——EfficientDet源码,包括数据和模型。手把手教物体检测——EfficientDet源码,包括数据和模型。

2020-06-14

yolov3_detect.zip

C#实现Yolov3模型的集成

2020-12-27

医学影像报告异常检测0.8956.zip

全球人工智能技术创新大赛 赛道一: 医学影像报告异常检测

2021-04-18

chapter7-GAN生成动漫头像.zip

chapter7-GAN生成动漫头像.zip 包含数据集和模型

2021-03-31

AI插画师:生成对抗网络数据集 .zip

AI插画师:生成对抗网络数据集。数据集包含有6万多张二次元妹子的头像。

2021-03-19

婚礼策划PPT模板.zip

婚礼策划PPT模板.zip

2020-07-09

炫酷科技PPT模板.zip

炫酷科技PPT模板.zip

2020-07-21

项目策划PPT模板.zip

项目策划PPT模板.zip

2020-07-17

C#调用C++托管类来实现混合编程.rar

前端用winfrom做界面,同时又可以保留C++的运行速度。发挥C#和C++各自的优势。

2020-04-01

商业计划书PPT模板.zip

商业计划书PPT模板.zip

2020-07-09

利用函数指针实现C的回调函数,实现调用者和底层驱动的解耦 第二种方式.zip

利用函数指针实现C的回调函数,实现调用者和底层驱动的解耦 第二种方式利用函数指针实现C的回调函数,实现调用者和底层驱动的解耦 第二种方式利用函数指针实现C的回调函数,实现调用者和底层驱动的解耦 第二种方式

2020-09-29

ScaledYOLOv4-yolov4-large实践.zip

ScaledYoloV4实践 https://wanghao.blog.csdn.net/article/details/112073471,代码和数据集

2021-01-01

唯美清新商务类PPT.zip

唯美清新商务类PPT.zip唯美清新商务类PPT.zip唯美清新商务类PPT.zip

2021-03-13

旅游摄影PPT.zip

旅游摄影PPT.zip旅游摄影PPT.zip旅游摄影PPT.zip旅游摄影PPT.zip旅游摄影PPT.zip旅游摄影PPT.zip

2021-03-13

唯美创意PPT.zip

唯美创意PPT.zip唯美创意PPT.zip唯美创意PPT.zip唯美创意PPT.zip

2021-03-13

同学聚会PPT.zip

同学聚会.zip同学聚会.zip同学聚会.zip同学聚会.zip同学聚会.zip同学聚会.zip同学聚会.zip

2021-03-13

AI插画师数据集.rar

《Pytorch入门与实践》第7章 GAN生成动漫头像使用的数据集,由于原来的数据集已经过期,我自己按照教程制作的数据集。

2021-03-13

述职报告PPT模板.zip

述职报告PPT模板.zip

2020-07-13

个人简历PPT模板.zip

个人简历PPT模板.zip

2020-07-09

企业培训PPT模板.zip

企业培训PPT模板.zip

2020-07-13

商务风格PPT模板.zip

商务风格PPT模板.zip

2020-07-13

欧美风格PPT模板.zip

欧美风格PPT模板.zip

2020-07-09

简洁风格PPT模板.zip

简洁风格PPT模板.zip

2020-07-09

工作汇报·总结2.rar

工作汇报·总结2.rar

2020-07-29

学通C#的24堂课.rar

学通C#的24堂课.rar。

2020-04-09

qt-vsaddin-msvc2017-2.3.2.zip

QT VS Tools 版本2.3.2.由于较高的版本有问题,会导致项目报错,遇到这类问题就需要降低版本。目前,2.3.2版本比较稳定。

2020-10-10

利用函数指针实现C的回调函数,实现调用者和底层驱动的解耦第一种方式.zip

利用函数指针实现C的回调函数,实现调用者和底层驱动的解耦第一种方式利用函数指针实现C的回调函数,实现调用者和底层驱动的解耦第一种方式利用函数指针实现C的回调函数,实现调用者和底层驱动的解耦第一种方式利用函数指针实现C的回调函数,实现调用者和底层驱动的解耦第一种方式

2020-09-29

RFBNet-master.rar

手把手教物体检测——RFBNet实例源码。包含数据、模型、测试、可视化展示。方便大家使用RFBNet模型。

2020-05-07

C++通过Loaddll的方式调用C封装的dll.rar

C++通过Loaddll的方式调用C封装的dllC++通过Loaddll的方式调用C封装的dllC++通过Loaddll的方式调用C封装的dllC++通过Loaddll的方式调用C封装的dll

2020-09-10

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除